Local Uniqueness in the Inverse Conductivity Problem with One Measurement
نویسندگان
چکیده
منابع مشابه
On uniqueness in the inverse conductivity problem with local data
The inverse condictivity problem with many boundary measurements consists of recovery of conductivity coefficient a (principal part) of an elliptic equation in a domain Ω ⊂ R, n = 2, 3 from the Neumann data given for all Dirichlet data (Dirichlet-to-Neumann map). Calderon [5] proposed the idea of using complex exponential solutions to demonstrate uniqueness in the linearized inverse condictivit...
متن کاملThe Inverse Conductivity Problem with One Measurement: Uniqueness for Convex Polyhedra
Let £2 denote a smooth domain in R" containing the closure of a convex polyhedron D . Set Xd equal to the characteristic function of D . We find a flux g so that if « is the nonconstant solution of div ((1 + xdWu) = 0 in Í2 with |j* = g on dSl, then D is uniquely determined by the Cauchy data g and / = u/dQ.. Introduction Let Q be a bounded domain in R" , n > 2, with a connected boundary and D ...
متن کاملOptimal Size Estimates for the Inverse Conductivity Problem with One Measurement
We prove upper and lower estimates on the measure of an inclusion D in a conductor Ω in terms of one pair of current and potential boundary measurements. The growth rates of such estimates are essentially best possible.
متن کاملUniqueness in the inverse conductivity problem for conductivites with 3/2 derivatives in L, p > 2n
The purpose of this note is to establish a small extension of a result of Panchenko, Päivärinta and Uhlmann [14]. These authors recently showed that we have uniqueness in the inverse conductivity problem for conductivities which are in the class C in three dimensions and higher. This built on earlier work of one the authors, Brown [3]. In this note, we relax this condition to conductivities whi...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1995
ISSN: 0002-9947
DOI: 10.2307/2154768